CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

Mechanics 1

1	(i)	Tension is 8000 N or 800 <i>g</i>	B1	1
	()	Accept 7840 N (from 9.8) or 7850 (from 9.81)		
	(ii)	For using $P = \frac{\Delta W}{\Delta t}$ or $P = Tv$	M1	
		$\Delta W = 8000 \times 20 \text{ or } v = \frac{20}{50}$	A1 ft	
		Power applied is 3200 W Accept 3140 W (from 9.8 or 9.81)	A1	3
		SR (for candidates who omit g)(Max 2 out of 3) $P = 800 \times 20 \div 50$ B1Power applied is 320 WB1		
2	(i) (a)	For resolving in the direction PQ	M1	
		Component is 2 x 10cos30° – 6cos60° or 14.3 N or $10\sqrt{3}$ – 3 N	A1	2
	(b)	Component is $\pm 6\cos 30^{\circ} - 6\cos 60^{\circ}$ or ± 5.20 N or $\pm 3\sqrt{3}$ N	B1	1
		SR (for candidates who resolve parallel to and perpendicular to the force of magnitude 6 N) (Max 2 out of 3)For resolving in both directionsM1For $X = 6 - 10\cos 30^\circ$ or -2.66 N and $Y = 10 + 10\sin 30^\circ$ or 15 NA1SR (for candidates who give a combined answer for (a) and (b))(Max 2 out of 3)For resolving in both directionsM1For ($6\cos 30^\circ$)i + ($2 \times 10\cos 30^\circ - 6\cos 60^\circ$)j or any vector equivalentA1		
	(ii)	For using Magnitude = $\sqrt{ans(i)^2 + ans(ii)^2}$	M1	-
		Magnitude is 15.2 N ft only following sin/cos mix and for answer 5.66 N	A1 ft	2
3	(i)	Region under $v = 2t$ from $t = 0$ to $t = T$ indicated	B1	1
	(ii)	For attempting to set up and solve an equation using area $\Delta = 16$ or for using $s = \frac{1}{2} 2t^2$	M1	
		For $16 = \frac{1}{2} 2T^2$	A1	
		T = 4	A1	3
		SR (for candidates who find the height of the Δ but donot score M1)(Max 1 out of 3)For $h/T = 2$ or $h = 2T$ or $v = 8$ B1		

PMT

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

	(iii)	For using distance = $10 \times ans$ (ii) or for using the idea that the distance is represented by the area of the relevant parallelogram or by the area of the trapezium (with parallel sides 9 and 4 and height 10) minus the area of the triangle (with base 5 and height 10)	M1	
		Distance is 40m	A1 ft	2
4	(i)	For differentiating <i>x</i>	M1	
		$\dot{x} = t + \frac{1}{10}t^2$	A1	
		Speed is 20 ms ⁻¹	A1	3
	(ii)	$\ddot{x} = 1 + \frac{1}{5}t$	B1 ft	
		For attempting to solve $\ddot{x}(t) = 2\ddot{x}(0)$ $(1 + \frac{1}{5}t = 2)$	M1	
		<i>t</i> = 5	A1	3
5	(i)	For resolving forces on any two of <i>A</i> , or <i>B</i> , or <i>A</i> and <i>B</i> combined $(T_1 = W_A + T_2, T_2 = W_B, T_1 = W_A + W_B)$	M1	
		Tension in S_1 is 4 N or Tension in S_2 is 2 N Accept 0.4 d or 3.92 (from 9.8 or 9.81) for T_2	B1	
		Tension in S_2 is 2 N or Tension in S_1 is 4 N Accept 0.2g or 1.96 (from 9.8 or 9.81) for T_2	A1	3
		SR (for candidates who omit g)(Max 1 out of 3) $T_1 = 0.4$ and $T_2 = 0.2$ B1		
	(ii)	For applying Newton's second law to <i>A</i> , or to <i>B</i> , or to <i>A</i> and <i>B</i> combined	M1	
		For any one of the equations $T + 2 - 0.4 = 0.2a$, 2 - T - 0.2 = 0.2a, $4 - 0.4 - 0.2 = 0.4a$	A1	
		For a second of the above equations	A1	
		For solving the simultaneous equations for <i>a</i> and <i>T</i>	M1	
		Acceleration is 8.5 ms ⁻² , tension is 0.1 N Accept 8.3 from 9.8 or 8.31 from 9.81	A1	5
		SR (for candidates who obtain only the 'combined' equation) (Max 3 out of 5)		
		For applying Newton's second law to A and B		
		For $4 - 0.4 - 0.2 = 0.4a$ A1		
		Acceleration is 8.5 ms ⁻² A1		

PMT

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

		-		
6	(i)	For using $F = \mu R$ and $R = mg$ $(F = 0.025 \times 0.15 \times 10)$	M1	
		Frictional force is 0.0375 N or 3/80 N Accept 0.0368 from 9.8 or 9.81	A1	2
	(ii)	For using $F = ma$ (-0.0375 = 0.15a) or $d = \mu g$	M1	
		Deceleration is 0.25 ms ⁻² (or $a = -0.25$) A.G.	A1	2
	(iii)	For using $s = ut + \frac{1}{2}at^2$ $(s = 5.5 \times 4 + \frac{1}{2}(-0.25)16)$	M1	
		Distance <i>AB</i> is 20m	A1	2
	(iv)	For using $v^2 = u^2 + 2as$ $(v^2 = 3.5^2 - 2 \times 0.25 \times 20)$	M1	
		Speed is 1.5 ms ⁻¹ (ft $\sqrt{(24.5 - (iii))/2}$)	A1 ft	2
	(v)	Return dist. = $\frac{3.5^2}{2 \times 0.25}$ or distance beyond $A = \frac{(iv)^2}{2 \times 0.25}$	M1	
		Total distance is 44.5 m (ft 24.5 + (iii) or 2((iv) ² + (iii))	A1 ft	2
7	(i)	PE gain = $mg(2.5sin60^\circ)$	B1	
		For using KE = $\frac{1}{2} mv^2$	M1	
		For using the principle of conservation of energy $(\frac{1}{2}m8^2 - \frac{1}{2}mv^2 = mg(2.5\sin 60^\circ))$	M1	
		Alternative for the above 3 marks:		
		For using Newton's Second Law or stating $a = -g \sin 60^{\circ}$	M1*	
		<i>a</i> = -8.66 (may be implied)	A1	
		For using $v^2 = u^2 + 2as$ $(v^2 = 64 - 2 \times 8.66 \times 2.5)$	M1dep*	
		Speed is 4.55 ms ⁻¹ Accept 4.64 from 9.8 or 9.81	A1	4
	(ii)	For using $\frac{1}{2} mu^2$ (>) $mg h_{max}$ ($\frac{1}{2} 8^2 > 10 h_{max}$)	M1	
		For obtaining 3.2m A.G.	A1	2
	(iii)	Energy is conserved or absence of friction or curve <i>BC</i> is smooth (or equivalent) and <i>B</i> and <i>C</i> are at the same height or the PE is the same at <i>A</i> and <i>B</i> (or equivalent)	B1	1

PMT

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	4

(iv	v) WD against friction is 1.4×5.2	B1	
	For WD = KE loss (or equivalent) used	M1	
	$1.4 \times 5.2 = \frac{1}{2} 0.4(8^2 - v^2) \text{ or}$ $1.4 \times 5.2 = \frac{1}{2} 0.4((i)^2 - v^2) + 0.4 \times 10(2.5 \sin 60^\circ)$ (12.8 or 4.14 + 8.66)	A1	
	Alternative for the above 3 marks: For using Newton's Second Law $0.4g(2.5\sin 60^\circ \div 5.2) - 1.4 = 0.4a$ (a = 0.6636) For using $v^2 = u^2 + 2as$ with $u \neq 0$ $(v^2 = 4.55^2 + 2 \times 0.6636 \times 5.2)$	M1* A1 M1dep*	
	Speed is 5.25 ms ⁻¹	A1	4