CAMBRIDGE
 international examinations

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04
 MATHEMATICS
 Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

Mechanics 1

1	(i)	Tension is 8000 N or 800 g Accept 7840 N (from 9.8) or 7850 (from 9.81)	B1	1
	(ii)	For using $P=\frac{\Delta W}{\Delta t}$ or $P=T v$	M1	
		$\Delta W=8000 \times 20 \text { or } v=\frac{20}{50}$	A1 ft	
		Power applied is 3200 W Accept 3140 W (from 9.8 or 9.81)	A1	3
		SR (for candidates who omit g) (Max 2 out of 3) $P=800 \times 20 \div 50$ B1 Power applied is 320 W		
2	(i) (a)	For resolving in the direction $P Q$	M1	
		Component is $2 \times 10 \cos 30^{\circ}-6 \cos 60^{\circ}$ or 14.3 N or $10 \sqrt{3}-3 \mathrm{~N}$	A1	2
	(b)	Component is $\pm 6 \cos 30^{\circ}-6 \cos 60^{\circ}$ or $\pm 5.20 \mathrm{~N}$ or $\pm 3 \sqrt{3} \mathrm{~N}$	B1	1
		SR (for candidates who resolve parallel to and perpendicular to the force of magnitude 6 N) (Max 2 out of 3) For resolving in both directions For $X=6-10 \cos 30^{\circ}$ or -2.66 N and $Y=10+10 \sin 30^{\circ} \text { or } 15 \mathrm{~N}$ SR (for candidates who give a combined answer for (a) and (b)) For resolving in both directions For $\left(6 \cos 30^{\circ}\right) \mathbf{i}+\left(2 \times 10 \cos 30^{\circ}-6 \cos 60^{\circ}\right) \mathbf{j}$ or any vector equivalent		
	(ii)	For using Magnitude $=\sqrt{\text { ans }(i)^{2}+a n s(i i)^{2}}$	M1	
		Magnitude is 15.2 N ft only following $\sin /$ cos mix and for answer 5.66 N	A1 ft	2
3	(i)	Region under $v=2 t$ from $t=0$ to $t=T$ indicated	B1	1
	(ii)	For attempting to set up and solve an equation using area $\Delta=16 \quad$ or \quad for using $s=1 / 22 t^{2}$	M1	
		For $16=1 / 22 T^{2}$	A1	
		$T=4$	A1	3
		SR (for candidates who find the height of the Δ but do not score M1) (Max 1 out of 3) For $h / T=2$ or $h=2 T$ or $v=8$		

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

6	(i)	For using $F=\mu R$ and $R=m g \quad(F=0.025 \times 0.15 \times 10)$	M1	
		Frictional force is 0.0375 N or $3 / 80 \mathrm{~N}$ Accept 0.0368 from 9.8 or 9.81	A1	2
	(ii)	For using $F=m a(-0.0375=0.15 \mathrm{a})$ or $d=\mu \mathrm{g}$	M1	
		Deceleration is $0.25 \mathrm{~ms}^{-2}$ (or $\mathrm{a}=-0.25$) A.G.	A1	2
	(iii)	For using $s=u t+\frac{1}{2} a t^{2} \quad\left(s=5.5 \times 4+\frac{1}{2}(-0.25) 16\right)$	M1	
		Distance $A B$ is 20 m	A1	2
	(iv)	For using $v^{2}=u^{2}+2 a s \quad\left(v^{2}=3.5^{2}-2 \times 0.25 \times 20\right)$	M1	
		Speed is $1.5 \mathrm{~ms}^{-1} \quad(\mathrm{ft} \sqrt{(24.5-(i i i)) / 2})$	A1 ft	2
	(v)	Return dist. $=\frac{3.5^{2}}{2 \times 0.25}$ or distance beyond $A=\frac{(i v)^{2}}{2 \times 0.25}$	M1	
		Total distance is 44.5 m (ft $24.5+$ (iii) or $2\left((\mathrm{iv})^{2}+(\mathrm{iii})\right)$	A1 ft	2
7	(i)	PE gain $=m g\left(2.5 \sin 60^{\circ}\right)$	B1	
		For using KE $=1 / 2 m v^{2}$	M1	
		For using the principle of conservation of energy $\left(1 / 2 m 8^{2}-1 / 2 m v^{2}=m g\left(2.5 \sin 60^{\circ}\right)\right)$	M1	
		Alternative for the above 3 marks: For using Newton's Second Law or stating $a=-g \sin 60^{\circ}$ $a=-8.66$ (may be implied) For using $v^{2}=u^{2}+2 a s \quad\left(v^{2}=64-2 \times 8.66 \times 2.5\right)$	M1* A1 M1dep*	
		Speed is $4.55 \mathrm{~ms}^{-1}$ Accept 4.64 from 9.8 or 9.81	A1	4
	(ii)	For using $1 / 2 m u^{2}(>) m g h_{\text {max }} \quad\left(1 / 28^{2}>10 h_{\text {max }}\right)$	M1	
		For obtaining 3.2m A.G.	A1	2
	(iii)	Energy is conserved or absence of friction or curve $B C$ is smooth (or equivalent) and B and C are at the same height or the PE is the same at A and B (or equivalent)	B1	1

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	4

(iv)	WD against friction is 1.4×5.2	B1	
	For WD = KE loss (or equivalent) used	M1	
	$\begin{aligned} & 1.4 \times 5.2=\frac{1}{2} 0.4\left(8^{2}-v^{2}\right) \text { or } \\ & 1.4 \times 5.2=\frac{1}{2} 0.4\left((i)^{2}-v^{2}\right)+0.4 \times 10\left(2.5 \sin 60^{\circ}\right) \\ & (12.8 \text { or } 4.14+8.66) \end{aligned}$	A1	
	Alternative for the above 3 marks: For using Newton's Second Law $0.4 g\left(2.5 \sin 60^{\circ} \div 5.2\right)-1.4=0.4 a \quad(a=0.6636)$ For using $v^{2}=u^{2}+2 a s$ with $u \neq 0$ $\left(v^{2}=4.55^{2}+2 \times 0.6636 \times 5.2\right)$	M1* A1 M1dep*	
	Speed is $5.25 \mathrm{~ms}^{-1}$	A1	4

